# Manufacturing Cost as a Linear Function

In manufacturing a component for a machine:

- the initial cost is RM 1,500
- the total of all other additional costs is RM 5.60 per unit produced.

Express the total cost C (in RM) as a linear function of the number q of units produced.

### Comments for Manufacturing Cost as a Linear Function

 Jul 25, 2012 Manufacturing Cost as a Linear Function by: Staff The answer: As you know, every linear function can be expressed in the slope intercept form.f(x) = mx + bm = slopeb = y interceptYour cost function can be represented like this:q = number of units producedC(q) = (all other additional costs is RM 5.60 per unit produced)*(number of units produced) + initial costC(q) = (RM 5.60)*(q) + RM 1,500C(q) = 5.6q + 1,500>>> The final answer is: C(q) = 5.6q + 1,500You can now compute a table of values if you wish.q,         C(q) = 5.6q + 1,500  1000,     = 5.6*1000 + 1500  2000,     = 5.6*2000 + 1500  3000,     = 5.6*3000 + 1500  4000,     = 5.6*4000 + 1500  5000,     = 5.6*5000 + 1500  6000,     = 5.6*6000 + 1500  7000,     = 5.6*7000 + 1500  8000,     = 5.6*8000 + 1500  9000,     = 5.6*9000 + 150010000,     = 5.6*10000 + 1500Units,     Cost  1000,       7100  2000,     12700  3000,     18300  4000,     23900  5000,     29500  6000,     35100  7000,     40700  8000,     46300  9000,     5190010000,     57500Thanks for writing.Staff www.solving-math-problems.com